기초통계2 [기초통계 정리 2] - Probability, Likelihood, MLE와 Python 구현 Deep Learning까지 가지 않더라도, 대부분의 머신 러닝의 개념에서는 확률과 우도의 개념이 빈번하게 등장한다. 그래서 기초 통계를 공부하던 도중, Probability와 Likelihood의 개념을 조금 더 자세하고 천천히 살펴보았다. 본 포스팅은 확률과 우도에 대한 기초적인 개념을 공부하고, 이를 간단한 Python 코드로 짜본 것이다. 1. Random Variable : 확률 변수 - 확률 변수의 정의 일반적으로, 변수라고 함은 특정한 하나의 숫자를 대표하는 것이다. 반면 확률 변수는 나올 수 있는 값들이 확률적 분포를 가지는 것이다. 머신 러닝에서의 확률 변수는 특정한 Vector, 혹은 숫자를 생성하는 기계에 비유할 수 있다. 확률은 0에서 1사이의 값으로 표현하지만, 확률 변수는 실수의.. 2018. 8. 5. [기초통계 정리 1] - 통계 용어 공부를 하면 할 수록 기초학문이 중요하다는 것을 깨닫고 있다. 기초 통계학의 내용 중, 명쾌하게 문장으로 요약하여 정리해두면 도움이 될 만한 것들을 글로 나타내보고자 한다. 아무리 쉬운 내용이라도 정의를 곱씹어보고 문장으로 정리하게 되면, 더 깊은 내용을 이해하는 데 도움이 될 것이다. - Inferential Statistics (추론 통계학) 추론 통계의 관점에서 통계학은, 표본을 통해서 모평균 등의 모수의 정보를 추정하는 것이다. 이를 신뢰도라는 개념을 통해서 검정하게 된다. 모집단의 정보인 평균, 분산 등을 통계학에서는 parameter 라고 한다. 예시) 출구조사로 모집단을 추론 - Random Variables (확률 변수) 관찰하기 전까지는 알 수 없는 값을 말한다.변수는 변수인데, 아직 관.. 2018. 7. 30. 이전 1 다음