차원축소1 [Recommender System] - Autoencoder를 이용한 차원 축소 기법 차원축소에 흔히 사용되는 방법은 SVD와 같은 Matrix Factorization, Eigen value 등의 개념을 활용한 것이다. 특히나 추천시스템에서는 유저나 아이템 단위의 profile에 이러한 차원축소를 유용하게 사용하곤 한다. 유저의 행동정보를 flat하게 펼쳐놓은 vector라던지, 비정형 정보의 embedding을 예로 들 수 있다. 기본적인 차원축소는 원래의 고차원 데이터를 중간 단계의 vector로 표현하고, 이를 다시 원래의 모형대로 완성하는 학습을 거치면 중간 단계의 vector가 축소된 정보를 잘 담고있다는 아이디어에서 출발한다. 가장 널리 알려진 PCA는 원래의 모형대로 학습하는 과정 없이, 선형적인 성질만을 이용하여 데이터의 분산을 최대화하는 차원으로 데이터를 투영시킨다. P.. 2019. 5. 20. 이전 1 다음