k-means
-
MNIST로 알아보는 비지도 학습 - [클러스터링과 차원 축소의 적용]Programming & Machine Learning/Python X 머신러닝 2019. 8. 6. 14:01
최근 클러스터링을 사용할 작업이 여기저기 많았다. 그래서 생각난김에 맨땅에 헤딩했던 관련 내용을 정리하고자 한다. 클러스터링 문제를 풀 때 마주치는 보통의 애로사항은 다음과 같다. 첫 번째, real-world 에서의 데이터 대부분은 극단적으로 skewed 하다는 것이다. 이는 모델이 군집을 잘 구분해내는 피처를 사용할 수 없다는 것을 의미한다. 이처럼 skewed한 분포의 데이터에서 군집을 발라내봤자, 기형적인 군집이 형성될 것이 뻔하기 때문이다. 만약 유클리드 거리로 데이터 포인트간의 거리를 계산하기라도 한다면, 사실상 군집 분석의 의미가 없어진다. 두 번째, 모델의 분류가 잘 되었는지를 평가할 방법이 불분명하다. 군집 분석을 하는 상황은 대부분 비지도 학습을 해야 하는 상황이다. 이 경우, 모델의 ..