recommender system13 [Recommender System] - 추천 시스템에 사용되는 알고리즘들 이전 포스팅에 이어 계속하여 추천 시스템에 대해 살펴보자. [Recommender System] - 추천 시스템의 전반적인 내용 (1)[Recommender System] - 추천 시스템의 전반적인 내용 (2) 1. 통계 기반 모델링에서 사용되는 알고리즘 지난 포스팅에서 카이제곱 분포를 이용한 검정방법에 대해 잠시 언급했었다. 설명했던 대로 추천 시스템에서 통계 기반 모델링이라는 것은 '이상' 징후를 보이는 아이템을 추출해내는 작업이라고 볼 수도 있겠다. 카이제곱 검정의 경우 구현하기도 어렵지 않고, 데이터를 전문적으로 하는 사람이라면 알고 넘어가야 하는 이론이기 때문에 조금 더 얘기해보자. 카이제곱을 통계적 모델링에 활용하는 방법은, χ2 = Σ (관측값 - 기댓값)2 / 기댓값 의 수식을 가지는 카이.. 2018. 5. 12. [Recommender System] - 추천 시스템의 전반적인 내용 (2) 이전 포스팅에 이어 계속하여 추천 시스템에 대해 살펴보자. 본 포스팅에서부터는 e-commerce에 다소 초점이 맞춰진 내용들로 구성되어 있다. [Recommender System] - 추천 시스템의 전반적인 내용 (1) 4. 과거 추천 시스템의 동향 추천 시스템 중에서도, 가장 역사가 오래되었으면서도 필자의 관심사가 집중된 e-commerce를 기반으로 추천 시스템의 전반적인 내용을 설명하겠다. 우선 e-commerce의 경우 크게 3가지 분류의 데이터인 Implicit Score, Explicit Score, Contents를 시스템 구축에 활용할 수 있다. 이 중 Contents는 아이템 자체에 대한 정보를 의미한다. 영화의 경우 감독명, 출연진 리스트 등이 있을 수 있고 커머스의 경우 상품의 색상.. 2018. 5. 12. [Recommender System] - 추천 시스템의 전반적인 내용 (1) 새 직장에서 본격적으로 일을 시작한 뒤 나의 메인 업무는 Recommender System이 되었다. 사실 이전부터 이 쪽 분야에 큰 흥미가 있었던지라, 어떻게 보면 운이 좋았다고 할 수도 있겠다. 원래 집에서는 잘 듣지도 않던 노래를 인공지능 스피커까지 구매하여 듣고, 각종 쇼핑몰 앱을 설치했으며 동영상 콘텐츠 스트리밍 유료결제까지 고민하고 있다. 문화생활도 할 겸, 추천 시스템과 친해지기 위한 노력의 일환이랄까. 하지만 학문적 베이스가 없는 나의 얕고 넓은 지식이, 추천 시스템을 만들고 고도화 하는 일을 하기에는 걸림돌이 될 수 있겠다는 생각이 들었다. 물론 데이터 과학을 통해 비즈니스를 창출할 수 있는 영역 중에 가장 넓은 폭의 지식과 다양한 경험이 필요한 분야라고는 생각하지만, 비즈니스맨이 아닌 .. 2018. 5. 12. 이전 1 2 다음